Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Life Sci Alliance ; 6(7)2023 07.
Article in English | MEDLINE | ID: covidwho-2296268

ABSTRACT

A soluble ACE2 protein bioengineered for long duration of action and high affinity to SARS-CoV-2 was administered either intranasally (IN) or intraperitoneally (IP) to SARS-CoV-2-inoculated k18hACE2 mice. This decoy protein (ACE2 618-DDC-ABD) was given either IN or IP, pre- and post-inoculation, or IN, IP, or IN + IP but only post-inoculation. Survival by day 5 was 0% in untreated mice, 40% in the IP-pre, and 90% in the IN-pre group. In the IN-pre group, brain histopathology was essentially normal and lung histopathology significantly improved. Consistent with this, brain SARS-CoV-2 titers were undetectable and lung titers reduced in the IN-pre group. When ACE2 618-DDC-ABD was administered only post-inoculation, survival was 30% in the IN + IP, 20% in the IN, and 20% in the IP group. We conclude that ACE2 618-DDC-ABD results in markedly improved survival and provides organ protection when given intranasally as compared with when given either systemically or after viral inoculation, and that lowering brain titers is a critical determinant of survival and organ protection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , Mice , SARS-CoV-2 , Brain
3.
J Am Soc Nephrol ; 33(7): 1293-1307, 2022 07.
Article in English | MEDLINE | ID: covidwho-1799028

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) uses full-length angiotensin converting enzyme 2 (ACE2) as a main receptor to enter target cells. The goal of this study was to demonstrate the preclinical efficacy of a novel soluble ACE2 protein with increased duration of action and binding capacity in a lethal mouse model of COVID-19. METHODS: A human soluble ACE2 variant fused with an albumin binding domain (ABD) was linked via a dimerization motif hinge-like 4-cysteine dodecapeptide (DDC) to improve binding capacity to SARS-CoV-2. This novel soluble ACE2 protein (ACE2-1-618-DDC-ABD) was then administered intranasally and intraperitoneally to mice before intranasal inoculation of SARS-CoV-2 and then for two additional days post viral inoculation. RESULTS: Untreated animals became severely ill, and all had to be humanely euthanized by day 6 or 7 and had pulmonary alveolar hemorrhage with mononuclear infiltrates. In contrast, all but one mouse infected with a lethal dose of SARS-CoV-2 that received ACE2-1-618-DDC-ABD survived. In the animals inoculated with SARS-CoV-2 that were untreated, viral titers were high in the lungs and brain, but viral titers were absent in the kidneys. Some untreated animals, however, had variable degrees of kidney proximal tubular injury as shown by attenuation of the proximal tubular brush border and increased NGAL and TUNEL staining. Viral titers in the lung and brain were reduced or nondetectable in mice that received ACE2-1-618-DDC-ABD, and the animals developed only moderate disease as assessed by a near-normal clinical score, minimal weight loss, and improved lung and kidney injury. CONCLUSIONS: This study demonstrates the preclinical efficacy of a novel soluble ACE2 protein, termed ACE2-1-618-DDC-ABD, in a lethal mouse model of SARS-CoV-2 infection that develops severe lung injury and variable degrees of moderate kidney proximal tubular injury.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/therapeutic use , Animals , COVID-19/therapy , Kidney/virology , Lung/virology , Mice , SARS-CoV-2
4.
Nat Commun ; 13(1): 405, 2022 01 20.
Article in English | MEDLINE | ID: covidwho-1631967

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of the coronavirus induced disease 2019 (COVID-19) with evolving variants of concern. It remains urgent to identify novel approaches against broad strains of SARS-CoV-2, which infect host cells via the entry receptor angiotensin-converting enzyme 2 (ACE2). Herein, we report an increase in circulating extracellular vesicles (EVs) that express ACE2 (evACE2) in plasma of COVID-19 patients, which levels are associated with severe pathogenesis. Importantly, evACE2 isolated from human plasma or cells neutralizes SARS-CoV-2 infection by competing with cellular ACE2. Compared to vesicle-free recombinant human ACE2 (rhACE2), evACE2 shows a 135-fold higher potency in blocking the binding of the viral spike protein RBD, and a 60- to 80-fold higher efficacy in preventing infections by both pseudotyped and authentic SARS-CoV-2. Consistently, evACE2 protects the hACE2 transgenic mice from SARS-CoV-2-induced lung injury and mortality. Furthermore, evACE2 inhibits the infection of SARS-CoV-2 variants (α, ß, and δ) with equal or higher potency than for the wildtype strain, supporting a broad-spectrum antiviral mechanism of evACE2 for therapeutic development to block the infection of existing and future coronaviruses that use the ACE2 receptor.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Extracellular Vesicles/immunology , SARS-CoV-2/immunology , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/blood , COVID-19/epidemiology , Chlorocebus aethiops , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice, Transgenic , Neutralization Tests/methods , Pandemics/prevention & control , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis , Vero Cells
5.
Acta Physiol (Oxf) ; 231(1): e13513, 2021 01.
Article in English | MEDLINE | ID: covidwho-1388186

ABSTRACT

The renin angiotensin system (RAS) plays an important role in the pathogenesis of variety of diseases. Targeting the formation and action of angiotensin II (Ang II), the main RAS peptide, has been the key therapeutic target for last three decades. ACE-related carboxypeptidase (ACE2), a monocarboxypeptidase that had been discovered 20 years ago, is one of the catalytically most potent enzymes known to degrade Ang II to Ang-(1-7), a peptide that is increasingly accepted to have organ-protective properties that oppose and counterbalance those of Ang II. In addition to its role as a RAS enzyme ACE2 is the main receptor for SARS-CoV-2. In this review, we discuss various strategies that have been used to achieve amplification of ACE2 activity including the potential therapeutic potential of soluble recombinant ACE2 protein and novel shorter ACE2 variants.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/therapy , Genetic Therapy , Receptors, Virus , SARS-CoV-2/pathogenicity , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/therapeutic use , Animals , COVID-19/enzymology , COVID-19/genetics , COVID-19/virology , Enzyme Activation , Enzyme Activators/therapeutic use , Gene Amplification , Host-Pathogen Interactions , Humans , Receptors, Virus/genetics , Receptors, Virus/metabolism , Receptors, Virus/therapeutic use , Recombinant Proteins/therapeutic use
6.
J Am Soc Nephrol ; 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1197446

ABSTRACT

BACKGROUND: There is an urgent need for approaches to prevent and treat SARS-CoV-2 infection. Administration of soluble ACE2 protein acting as a decoy to bind to SARS-CoV-2 should limit viral uptake mediated by binding to membrane-bound full-length ACE2, and further therapeutic benefit should result from ensuring enzymatic ACE2 activity to affected organs in patients with COVID-19. METHODS: A short variant of human soluble ACE2 protein consisting of 618 amino acids (hACE2 1-618) was generated and fused with an albumin binding domain (ABD) using an artificial gene encoding ABDCon, with improved albumin binding affinity. Human kidney organoids were used for infectivity studies of SARS-CoV-2 in a BSL-3 facility to examine the neutralizing effect of these novel ACE2 variants. RESULTS: Whereas plasma ACE2 activity of the naked ACE2 1-618 and ACE2 1-740 lasted about 8 hours, the ACE2 1-618-ABD resulted in substantial activity at 96 hours, and it was still biologically active 3 days after injection. Human kidney organoids express ACE2 and TMPRSS2, and when infected with SARS-CoV-2, our modified long-acting ACE2 variant neutralized infection. CONCLUSIONS: This novel ACE2 1-618-ABD can neutralize SARS-CoV-2 infectivity in human kidney organoids, and its prolonged duration of action should ensure improved efficacy to prevent viral escape and dosing convenience.

7.
Hypertension ; 76(5): 1339-1349, 2020 11.
Article in English | MEDLINE | ID: covidwho-992136

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 originated from Wuhan, China, in December 2019 and rapidly spread to other areas worldwide. Since then, coronavirus disease 2019 (COVID-19) has reached pandemic proportions with >570 000 deaths globally by mid-July 2020. The magnitude of the outbreak and the potentially severe clinical course of COVID-19 has led to a burst of scientific research on this novel coronavirus and its host receptor ACE (angiotensin-converting enzyme)-2. ACE2 is a homolog of the ACE that acts on several substrates in the renin-Ang (angiotensin) system. With unprecedented speed, scientific research has solved the structure of SARS-CoV-2 and imaged its binding with the ACE2 receptor. In SARS-CoV-2 infection, the viral S (spike) protein receptor-binding domain binds to ACE2 to enter the host cell. ACE2 expression in the lungs is relatively low, but it is present in type II pneumocytes-a cell type also endowed with TMPRSS2 (transmembrane protease serine 2). This protease is critical for priming the SARS-CoV-2 S protein to complex with ACE2 and enter the cells. Herein, we review the current understanding of the interaction of SARS-CoV-2 with ACE2 as it has rapidly unfolded over the last months. While it should not be assumed that we have a complete picture of SARS-CoV-2 mechanism of infection and its interaction with ACE2, much has been learned with clear therapeutic implications. Potential therapies aimed at intercepting SARS-CoV-2 from reaching the full-length membrane-bound ACE2 receptor using soluble ACE2 protein and other potential approaches are briefly discussed as well.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Betacoronavirus/metabolism , Coronavirus Infections/epidemiology , Pandemics/statistics & numerical data , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/epidemiology , Protein Binding/genetics , Angiotensin-Converting Enzyme 2 , COVID-19 , China , Coronavirus Infections/metabolism , Disease Outbreaks/statistics & numerical data , Female , Humans , Male , Pandemics/prevention & control , Pneumonia, Viral/metabolism , RNA, Viral/genetics , SARS-CoV-2
8.
Clin Sci (Lond) ; 134(21): 2791-2805, 2020 11 13.
Article in English | MEDLINE | ID: covidwho-899997

ABSTRACT

Angiotensin-converting enzyme II (ACE2) is a homologue of angiotensin-converting enzyme discovered in 2000. From the initial discovery, it was recognized that the kidneys were organs very rich on ACE2. Subsequent studies demonstrated the precise localization of ACE2 within the kidney and the importance of this enzyme in the metabolism of Angiotensin II and the formation of Angiotensin 1-7. With the recognition early in 2020 of ACE2 being the main receptor of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), the interest in this protein has dramatically increased. In this review, we will focus on kidney ACE2; its localization, its alterations in hypertension, diabetes, the effect of ACE inhibitors and angiotensin type 1 receptor blockers (ARBs) on ACE2 and the potential use of ACE2 recombinant proteins therapeutically for kidney disease. We also describe the emerging kidney manifestations of COVID-19, namely the frequent development of acute kidney injury. The possibility that binding of SARS-CoV-2 to kidney ACE2 plays a role in the kidney manifestations is also briefly discussed.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/enzymology , Kidney Diseases/enzymology , Kidney/enzymology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/enzymology , Receptors, Virus/metabolism , Acute Kidney Injury/enzymology , Acute Kidney Injury/virology , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Diabetes Mellitus/enzymology , Diabetes Mellitus/physiopathology , History, 21st Century , Host-Pathogen Interactions , Humans , Hypertension/enzymology , Hypertension/physiopathology , Kidney/physiopathology , Kidney Diseases/drug therapy , Kidney Diseases/physiopathology , Pandemics , Peptidyl-Dipeptidase A/history , Peptidyl-Dipeptidase A/therapeutic use , Pneumonia, Viral/virology , Receptors, Virus/history , SARS-CoV-2 , COVID-19 Drug Treatment
10.
FASEB J ; 34(8): 10505-10515, 2020 08.
Article in English | MEDLINE | ID: covidwho-602184

ABSTRACT

Angiotensin converting enzyme 2 (ACE2) plays an important role in inflammation, which is attributable at least, in part, to the conversion of the pro-inflammatory angiotensin (Ang) II peptide into angiotensin 1-7 (Ang 1-7), a peptide which opposes the actions of AngII. ACE2 and AngII are present in many tissues but information on the cornea is lacking. We observed that mice deficient in the Ace2 gene (Ace2-/- ), developed a cloudy cornea phenotype as they aged. Haze occupied the central cornea, accompanied by corneal edema and neovascularization. In severe cases with marked chronic inflammation, a cell-fate switch from a transparent corneal epithelium to a keratinized, stratified squamous, psoriasiform-like epidermis was observed. The stroma contained a large number of CD11c, CD68, and CD3 positive cells. Corneal epithelial debridement experiments in young ACE2-deficient mice showed normal appearing corneas, devoid of haze. We hypothesized, however, that these mice are "primed" for a corneal inflammatory response, which once initiated, would persist. In vitro studies reveal that interleukins (IL-1a, IL-1b), chemokines (CCL2, CXCL8), and TNF-α, are all significantly elevated, resulting in a cytokine storm-like phenotype. This phenotype could be partially rescued by treatment with the AngII type 1 receptor (AT1R) antagonist, losartan, suggesting that the observed effect was mediated by AngII acting on its main receptor. Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes human ACE2 as the receptor for entry with subsequent downregulation of ACE2, corneal inflammation in Ace2-/- mice may have a similar mechanism with that in COVID-19 patients. Thus the Ace2-/- cornea, because of easy accessibility, may provide an attractive model to explore the molecular mechanisms, immunological changes, and treatment modalities in patients with COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Cornea/pathology , Cytokine Release Syndrome/physiopathology , Disease Models, Animal , Angiotensin II/metabolism , Animals , COVID-19 , Cells, Cultured , Chemokines/metabolism , Epithelial Cells/metabolism , Humans , Interleukins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , SARS-CoV-2 , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism
11.
Clin Sci (Lond) ; 134(5): 543-545, 2020 03 13.
Article in English | MEDLINE | ID: covidwho-8347

ABSTRACT

A new coronavirus, referred to as SARS-CoV-2, is responsible for the recent outbreak of severe respiratory disease. This outbreak first detected in Wuhan, China in December 2019, has spread to other regions of China and to 25 other countries as of January, 2020. It has been known since the 2003 SARS epidemic that the receptor critical for SARS-CoV entry into host cells is the angiotensin-converting enzyme 2 (ACE2). The S1 domain of the spike protein of SARS-CoV attaches the virus to its cellular receptor ACE2 on the host cells. We thought that it is timely to explain the connection between the SARS-CoV, SARS-CoV-2, ACE2 and the rationale for soluble ACE2 as a potential therapy.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Peptidyl-Dipeptidase A , Pneumonia, Viral/drug therapy , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Virus Attachment , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Cell Line , Haplorhini , Humans , Peptidyl-Dipeptidase A/physiology , Recombinant Proteins/therapeutic use , SARS-CoV-2 , Solubility , Virus Replication , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL